AI 文摘

ChatGLM-6B模型结构组件源码阅读





作者: AINLP 来源: AINLP

一、前言

本文将介绍ChatGLM-6B的模型结构组件源码。

代练链接:https://huggingface.co/THUDM/chatglm-6b/blob/main/modeling_chatglm.py

二、激活函数

@torch.jit.script  
def gelu_impl(x):  
    """OpenAI's gelu implementation."""  
    return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *  
                                       (1.0 + 0.044715 * x * x)))  
  
  
def gelu(x):  
    return gelu_impl(x)  

三、位置编码

3.1、RoPE原理简介

ChatGLM-6B的位置编码采用的旋转位置编码(详细推导过程见原文:ROPE),简单来说其目的就是构建一个包含相对位置信息的Attention矩阵,其公式如下:

式中,、分别表示注意力机制中的query和key,、分别表示两个位置,表示位置i处处理的矩阵,其中的形式为:

原作者提到,由于非常稀疏,直接用矩阵乘法来实现会很浪费算力,推荐通过下述方式来实现RoPE:

3.2、ChatGLM-6B中RoPE代码实现

这里直接上代码阅读

class RotaryEmbedding(torch.nn.Module):  
    def __init__(self, dim, base=10000, precision=torch.half, learnable=False):  
        super().__init__()  
        inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))  
        inv_freq = inv_freq.half()  
        self.learnable = learnable  
        if learnable:  
            self.inv_freq = torch.nn.Parameter(inv_freq)  
            self.max_seq_len_cached = None  
        else:  
            self.register_buffer('inv_freq', inv_freq)  
            self.max_seq_len_cached = None  
            self.cos_cached = None  
            self.sin_cached = None  
        self.precision = precision  
  
    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,  
                              error_msgs):  
        pass  
  
    def forward(self, x, seq_dim=1, seq_len=None):  
        if seq_len is None:  
            seq_len = x.shape[seq_dim]  
        if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):  
            self.max_seq_len_cached = None if self.learnable else seq_len  
            # 在计算旋转嵌入之前,根据当前的嵌入维度和基数计算频率因子 inv_freq。将其转换为半精度数据类型(如果指定的 precision 为 bfloat16,则转换为单精度)。  
            t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)  
            # 使用 爱因斯坦求和函数 einsum 将 t 和 inv_freq 相乘,得到频率矩阵 freqs。  
            freqs = torch.einsum('i,j->ij', t, self.inv_freq)  
            # 通过在频率矩阵 freqs 中进行重复和拼接操作,生成旋转嵌入矩阵 emb,其维度为 [seq_len, 2 * dim]。  
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)  
            if self.precision == torch.bfloat16:  
                emb = emb.float()  
  
            # 将旋转嵌入矩阵 emb 分别进行余弦和正弦运算。  
            cos_cached = emb.cos()[:, None, :]  
            sin_cached = emb.sin()[:, None, :]  
            if self.precision == torch.bfloat16:  
                cos_cached = cos_cached.bfloat16()  
                sin_cached = sin_cached.bfloat16()  
            if self.learnable:  
                return cos_cached, sin_cached  
            self.cos_cached, self.sin_cached = cos_cached, sin_cached  
        # 按照序列长度截取  
        return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]  

四、注意力层

4.1、2D位置编码

ChatGLM-6B代码中这一层采用的位置编码是GLM的中提出的2D位置编码,详细原理见原文:GLM: General Language Model Pretraining with Autoregressive Blank Infilling,其原理图如下图:

输入的序列是,片段和片段、被随机MASK,原始的输入序列则变为,如上图(a)和(b)所示。将三个片段拼接得到模型的输入,模型的输出则是被遮蔽掉的片段,如上图(c)所示。这里使用了2种位置编码:第一种编码为整个输入嵌入位置信息,能够表示MASK片段在原始输入中的位置;第二种位置编码则是为MASK片段内的tokens输入位置信息。

4.2、注意力机制

ChatGLM-6B相比标准的自注意力机制在Q和K中注入了RoPE位置信息。

  • 标准自注意力机制attention_fn

    def attention_fn(
            self,
            query_layer,
            key_layer,
            value_layer,
            attention_mask,
            hidden_size_per_partition,
            layer_id,
            layer_past=None,
            scaling_attention_score=True,
            use_cache=False,
    ):
        # 考虑过去的信息
        if layer_past is not None:
            past_key, past_value = layer_past
            key_layer = torch.cat((past_key, key_layer), dim=0)
            value_layer = torch.cat((past_value, value_layer), dim=0)

        # seqlen, batch, num_attention_heads, hidden_size_per_attention_head
        seq_len, b, nh, hidden_size = key_layer.shape

        if use_cache:
            present = (key_layer, value_layer)
        else:
            present = None

        # 对查询层进行缩放操作,即将其除以(隐藏层大小的平方根乘以查询层的缩放系数)。这是为了控制注意力得分的尺度。
        query_key_layer_scaling_coeff = float(layer_id + 1)
        if scaling_attention_score:
            query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # # 注意力分数的输出形状: [batch_size, num_heads, seq_length, seq_length]
        output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))

        # 形状重塑:[seq_length, batch_size, num_heads, head_dim] -> [seq_length, batch_size*num_heads, head_dim]
        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)

        matmul_result = torch.empty(
            output_size[0] * output_size[1],
            output_size[2],
            output_size[3],
            dtype=query_layer.dtype,
            device=query_layer.device,
        )
        # 计算原始的注意力得分,通过转置和重塑操作,将查询、键和值的张量形状调整为合适的形状。
        matmul_result = torch.baddbmm(
            matmul_result,
            query_layer.transpose(0, 1),  # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0,
            alpha=1.0,
        )

        # 重塑形状为:[batch_size,num_head,seq_length,seq_length]
        attention_scores = matmul_result.view(*output_size)

        # 如果指定了缩放的掩码 softmax(scale_mask_softmax),则将注意力得分传递给缩放的掩码 softmax 函数进行处理,以获得归一化的注意力概率。
        # 否则,将应用 softmax 操作,并根据需要填充一个较大的负数值(-10000.0)来屏蔽无效位置。
        if self.scale_mask_softmax:
            self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
            attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
        else:
            # 对注意力分数进行mask
            if not (attention_mask == 0).all():
                # if auto-regressive, skip
                attention_scores.masked_fill_(attention_mask, -10000.0)
            dtype = attention_scores.type()
            attention_scores = attention_scores.float()
            attention_scores = attention_scores * query_key_layer_scaling_coeff

            attention_probs = F.softmax(attention_scores, dim=-1)

            attention_probs = attention_probs.type(dtype)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] –> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)

        # 对注意力分数进行mask
        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)
        # [b, np, sq, hn] –> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
        # [sq, b, np, hn] –> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
        # 重塑上下文层
        context_layer = context_layer.view(*new_context_layer_shape)
        outputs = (context_layer, present, attention_probs)

        return outputs

  • SelfAttention的目的是为了捕捉序列中的位置信息,应用RoPE将位置信息注入Q和K。
    class SelfAttention(torch.nn.Module):
        def init(self, hidden_size, num_attention_heads,
                     layer_id, hidden_size_per_attention_head=None, bias=True,
                     params_dtype=torch.float, position_encoding_2d=True):
            super(SelfAttention, self).init()

            self.layer_id = layer_id
            self.hidden_size = hidden_size
            self.hidden_size_per_partition = hidden_size
            self.num_attention_heads = num_attention_heads
            self.num_attention_heads_per_partition = num_attention_heads
            self.position_encoding_2d = position_encoding_2d
            self.rotary_emb = RotaryEmbedding(
                self.hidden_size // (self.num_attention_heads * 2)
                if position_encoding_2d
                else self.hidden_size // self.num_attention_heads,
                base=10000,
                precision=torch.half,
                learnable=False,
            )

            self.scale_mask_softmax = None

            if hidden_size_per_attention_head is None:
                self.hidden_size_per_attention_head = hidden_size // num_attention_heads
            else:
                self.hidden_size_per_attention_head = hidden_size_per_attention_head

            self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head

            # Strided linear layer.
            self.query_key_value = skip_init(
                torch.nn.Linear,
                hidden_size,
                3 * self.inner_hidden_size,
                bias=bias,
                dtype=params_dtype,
            )

            self.dense = skip_init(
                torch.nn.Linear,
                self.inner_hidden_size,
                hidden_size,
                bias=bias,
                dtype=params_dtype,
            )

        @staticmethod
        def attention_mask_func(attention_scores, attention_mask):
            attention_scores.masked_fill_(attention_mask, -10000.0)
            return attention_scores

        def split_tensor_along_last_dim(self, tensor, num_partitions,
                                        contiguous_split_chunks=False):
            “““Split a tensor along its last dimension.
            Arguments:
                tensor: input tensor.
                num_partitions: number of partitions to split the tensor
                contiguous_split_chunks: If True, make each chunk contiguous
                                        in memory.
            "””
            # Get the size and dimension.
            last_dim = tensor.dim() - 1
            last_dim_size = tensor.size()[last_dim] // num_partitions
            # Split.
            tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
            # Note: torch.split does not create contiguous tensors by default.
            if contiguous_split_chunks:
                return tuple(chunk.contiguous() for chunk in tensor_list)

            return tensor_list

        def forward(
                self,
                hidden_states: torch.Tensor,
                position_ids,
                attention_mask: torch.Tensor,
                layer_id,
                layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
                use_cache: bool = False,
                output_attentions: bool = False,
        ):
            "”"
            hidden_states: [seq_len, batch, hidden_size]
            attention_mask: [(1, 1), seq_len, seq_len]
            """

            # [seq_len, batch, 3 * hidden_size]
            mixed_raw_layer = self.query_key_value(hidden_states)

            # [seq_len, batch, 3 * hidden_size] –> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
            new_tensor_shape = mixed_raw_layer.size()[:-1] + (
                self.num_attention_heads_per_partition,
                3 * self.hidden_size_per_attention_head,
            )
            mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)

            # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
            (query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)

            # 根据是否使用二维位置编码,对查询和键应用旋转嵌入,并根据位置信息进行索引操作。
            if self.position_encoding_2d:
                q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
                k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
                cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
                position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
                                                   position_ids[:, 1, :].transpose(0, 1).contiguous()
                q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
                q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
                # 拼接嵌入不同位置信息的query和key,这样query和key中包含了两种位置信息
                query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
                key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
            else:
                # RoPE
                position_ids = position_ids.transpose(0, 1)
                cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
                # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
                query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)

            # 调用 attention_fn 方法计算注意力得分和上下文层,其中使用了注意力函数的代码块
            # [seq_len, batch, hidden_size]
            context_layer, present, attention_probs = attention_fn(
                self=self,
                query_layer=query_layer,
                key_layer=key_layer,
                value_layer=value_layer,
                attention_mask=attention_mask,
                hidden_size_per_partition=self.hidden_size_per_partition,
                layer_id=layer_id,
                layer_past=layer_past,
                use_cache=use_cache
            )

            output = self.dense(context_layer)

            outputs = (output, present)

            if output_attentions:
                outputs += (attention_probs,)

            return outputs  # output, present, attention_probs

五、GLU层

根据代码,GLU形式化表示为:

class GEGLU(torch.nn.Module):  
    def __init__(self):  
        super().__init__()  
        self.activation_fn = F.gelu  
  
    def forward(self, x):  
        # dim=-1 breaks in jit for pt<1.10  
        x1, x2 = x.chunk(2, dim=(x.ndim - 1))  
        return x1 * self.activation_fn(x2)  
  
  
class GLU(torch.nn.Module):  
    def __init__(self, hidden_size, inner_hidden_size=None,  
                 layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float):  
        super(GLU, self).__init__()  
        self.layer_id = layer_id  
        self.activation_func = activation_func  
  
        # Project to 4h.  
        self.hidden_size = hidden_size  
        if inner_hidden_size is None:  
            inner_hidden_size = 4 * hidden_size  
        self.inner_hidden_size = inner_hidden_size  
        self.dense_h_to_4h = skip_init(  
            torch.nn.Linear,  
            self.hidden_size,  
            self.inner_hidden_size,  
            bias=bias,  
            dtype=params_dtype,  
        )  
        # Project back to h.  
        self.dense_4h_to_h = skip_init(  
            torch.nn.Linear,  
            self.inner_hidden_size,  
            self.hidden_size,  
            bias=bias,  
            dtype=params_dtype,  
        )  
  
    def forward(self, hidden_states):  
        """  
        hidden_states: [seq_len, batch, hidden_size]  
        """  
  
        # [seq_len, batch, inner_hidden_size]  
        intermediate_parallel = self.dense_h_to_4h(hidden_states)  
  
        intermediate_parallel = self.activation_func(intermediate_parallel)  
  
        output = self.dense_4h_to_h(intermediate_parallel)  
  
        return output  

六、GLMBlock

根据代码,GLMBlock由Layer Norm、Self Attention、Layer Norm和GLU模块构成。

class GLMBlock(torch.nn.Module):  
    def __init__(  
            self,  
            hidden_size,  
            num_attention_heads,  
            layernorm_epsilon,  
            layer_id,  
            inner_hidden_size=None,  
            hidden_size_per_attention_head=None,  
            layernorm=LayerNorm,  
            use_bias=True,  
            params_dtype=torch.float,  
            num_layers=28,  
            position_encoding_2d=True  
    ):  
        super(GLMBlock, self).__init__()  
        # Set output layer initialization if not provided.  
  
        self.layer_id = layer_id  
  
        # LayerNorm层  
        self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)  
        # 是否使用2维位置编码  
        self.position_encoding_2d = position_encoding_2d  
  
        # 自注意力层  
        self.attention = SelfAttention(  
            hidden_size,  
            num_attention_heads,  
            layer_id,  
            hidden_size_per_attention_head=hidden_size_per_attention_head,  
            bias=use_bias,  
            params_dtype=params_dtype,  
            position_encoding_2d=self.position_encoding_2d  
        )  
  
        # LayerNorm层  
        self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)  
  
        self.num_layers = num_layers  
  
        # GLU层  
        self.mlp = GLU(  
            hidden_size,  
            inner_hidden_size=inner_hidden_size,  
            bias=use_bias,  
            layer_id=layer_id,  
            params_dtype=params_dtype,  
        )  
  
    def forward(  
            self,  
            hidden_states: torch.Tensor,  
            position_ids,  
            attention_mask: torch.Tensor,  
            layer_id,  
            layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  
            use_cache: bool = False,  
            output_attentions: bool = False,  
    ):  
        """  
        hidden_states: [seq_len, batch, hidden_size]  
        attention_mask: [(1, 1), seq_len, seq_len]  
        """  
  
        # 输入进行Layer Norm  
        # [seq_len, batch, hidden_size]  
        attention_input = self.input_layernorm(hidden_states)  
  
        # 自注意力  
        attention_outputs = self.attention(  
            attention_input,  
            position_ids,  
            attention_mask=attention_mask,  
            layer_id=layer_id,  
            layer_past=layer_past,  
            use_cache=use_cache,  
            output_attentions=output_attentions  
        )  
  
        attention_output = attention_outputs[0]  
  
        outputs = attention_outputs[1:]  
  
        # Residual connection.  
        alpha = (2 * self.num_layers) ** 0.5  
        # 执行注意力残差连接  
        hidden_states = attention_input * alpha + attention_output  
        # 对注意力残差连接后的输出进行层归一化  
        mlp_input = self.post_attention_layernorm(hidden_states)  
  
        # 使用GLU层对归一化后的输出进行非线性变换  
        mlp_output = self.mlp(mlp_input)  
  
        # 执行GLU残差连接  
        output = mlp_input * alpha + mlp_output  
  
        if use_cache:  
            outputs = (output,) + outputs  
        else:  
            outputs = (output,) + outputs[1:]  
  
        return outputs  # hidden_states, present, attentions  

七、ChatGLMPreTrainedModel

这一块主要看看其中的MASKPosition_ids

7.1、ChatGLM-6B的Mask

ChatGLM-6B采用prefix-LM的Mask,其对于输入的前缀使用双向注意力 ,对于后续的生成部分则是Causal Mask

def get_masks(self, input_ids, device):  
    batch_size, seq_length = input_ids.shape  
    # context_lengths记录了batch中每个样本的真实长度  
    context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]  
    # 生成causal mask,即下三角以及对角线为1,上三角为0  
    attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)  
    attention_mask.tril_()  
    # 将前缀部分的注意力改为双向注意力  
    for i, context_length in enumerate(context_lengths):  
        attention_mask[i, :, :context_length] = 1  
    attention_mask.unsqueeze_(1)  
    attention_mask = (attention_mask < 0.5).bool()  
          
    return attention_mask  

7.2、ChatGLM-6B的Position_ids

def get_position_ids(self, input_ids, mask_positions, device, use_gmasks=None):  
    """  
    input_ids: [batch_size, seq_length]  
    mask_positions: [batch_size],由于GLM系列中会使用[Mask]或[gMask]标志,mask_positions就是指这些标注的具体位置  
    """  
    batch_size, seq_length = input_ids.shape  
    if use_gmasks is None:  
        use_gmasks = [False] * batch_size  
    # context_lengths:未被padding前,batch中各个样本的长度  
    context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]  
    # 2维位置编码  
    if self.position_encoding_2d:  
        # [0,1,2,...,seq_length-1]  
        position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)  
        # 将原始输入后所有位置的postion id都设置为[Mask]或者[gMask]的位置id  
        for i, context_length in enumerate(context_lengths):  
            position_ids[i, context_length:] = mask_positions[i]  
        # 原始输入的位置编码全部设置为0,待生成的位置添加顺序的位置id  
        # 例如:[0,0,0,0,1,2,3,4,5]  
        block_position_ids = [torch.cat((  
            torch.zeros(context_length, dtype=torch.long, device=device),  
            torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1  
        )) for context_length in context_lengths]  
        block_position_ids = torch.stack(block_position_ids, dim=0)  
        # 将postion_ids和block_position_ids堆叠在一起,用于后续的参数传入;  
        # 在注意力层中,还有将这个position_ids拆分为两部分  
        position_ids = torch.stack((position_ids, block_position_ids), dim=1)  
    else:  
        position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)  
        for i, context_length in enumerate(context_lengths):  
            if not use_gmasks[i]:  
                position_ids[i, context_length:] = mask_positions[i]  
  
    return position_ids  

八、ChatGLMModel

这一块主要是模型的各部件的组合结构,直接看源码:

class ChatGLMModel(ChatGLMPreTrainedModel):  
 def __init__(self, config: ChatGLMConfig, empty_init=True):  
        super().__init__(config)  
        if empty_init:  
            init_method = skip_init  
        else:  
            init_method = default_init  
        # recording parameters  
        self.max_sequence_length = config.max_sequence_length  
        self.hidden_size = config.hidden_size  
        self.params_dtype = torch.half  
        self.num_attention_heads = config.num_attention_heads  
        self.vocab_size = config.vocab_size  
        self.num_layers = config.num_layers  
        self.layernorm_epsilon = config.layernorm_epsilon  
        self.inner_hidden_size = config.inner_hidden_size  
        self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads  
        self.position_encoding_2d = config.position_encoding_2d  
        self.pre_seq_len = config.pre_seq_len  
        self.prefix_projection = config.prefix_projection  
  
        self.word_embeddings = init_method(  
            torch.nn.Embedding,  
            num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,  
            dtype=self.params_dtype  
        )  
        self.gradient_checkpointing = False  
  
        def get_layer(layer_id):  
            return GLMBlock(  
                self.hidden_size,  
                self.num_attention_heads,  
                self.layernorm_epsilon,  
                layer_id,  
                inner_hidden_size=self.inner_hidden_size,  
                hidden_size_per_attention_head=self.hidden_size_per_attention_head,  
                layernorm=LayerNorm,  
                use_bias=True,  
                params_dtype=self.params_dtype,  
                position_encoding_2d=self.position_encoding_2d,  
                empty_init=empty_init  
            )  
  
        self.layers = torch.nn.ModuleList(  
            [get_layer(layer_id) for layer_id in range(self.num_layers)]  
        )  
  
        # Final layer norm before output.  
        self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)  
  
        """  
        pre_seq_len 为prompt部分长度,这部分仅编码,无反向传播  
  
        """  
        if self.pre_seq_len is not None:  
            for param in self.parameters():  
                param.requires_grad = False  
            self.prefix_tokens = torch.arange(self.pre_seq_len).long()  
            self.prefix_encoder = PrefixEncoder(config)  
            self.dropout = torch.nn.Dropout(0.1)  
  
  
    def get_prompt(self, batch_size, device, dtype=torch.half):  
        """  
        prompt 编码  
          
        """  
        prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)  
        past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)  
        past_key_values = past_key_values.view(  
            batch_size,  
            self.pre_seq_len,  
            self.num_layers * 2,  
            self.num_attention_heads,  
            self.hidden_size // self.num_attention_heads  
        )  
        # seq_len, b, nh, hidden_size  
        past_key_values = self.dropout(past_key_values)  
        past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)  
        # past_key_values = [(v[0], v[1]) for v in past_key_values]  
        return past_key_values  
  
  
 def forward(  
            self,  
            input_ids: Optional[torch.LongTensor] = None,  
            position_ids: Optional[torch.LongTensor] = None,  
            attention_mask: Optional[torch.Tensor] = None,  
            past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,  
            inputs_embeds: Optional[torch.LongTensor] = None,  
            use_cache: Optional[bool] = None,  
            output_attentions: Optional[bool] = None,  
            output_hidden_states: Optional[bool] = None,  
            return_dict: Optional[bool] = None,  
    ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:  
        .....  
        """  
 past_key_values机制是重要的机制,其可以防止模型在文本生成任务中重新计算上一次迭代  
  中已经计算好的上下文的值,大大提高了模型在文本生成任务中的计算效率。但要特别注意的是,  
    在第一次迭代时由于不存在上一次迭代返回的past_key_values值,因此第一次迭代时  
    past_key_values值为None。  
    past_key_values 中每个元素的dim :  
    num_layers * seq_len * batch_size * nh * hidden_size_per_head  
        """  
        if past_key_values is None:  
            if self.pre_seq_len is not None:  
                past_key_values = self.get_prompt(batch_size=input_ids.shape[0], device=input_ids.device,  
                                                  dtype=inputs_embeds.dtype)  
            else:  
                past_key_values = tuple([None] * len(self.layers))  
  
            if attention_mask is None:  
                attention_mask = self.get_masks(  
                    input_ids,  
                    device=input_ids.device  
                )  
  
  
            if position_ids is None:  
    """  
    如果只有MASK无gMASK,则mask_positions 为第一个MASK的起始位置,  
    如果有gMASK, 则mask_positions 为第一个gMASK的起始位置  
    e.g.  
    gMASK = 130001  
    MASK = 130000  
    seqs = [[11,22,MASK,33,MASK]]  
    --> mask_positions:[2] use_gmask = [False]  
  
    gMASK = 130001  
    MASK = 130000  
    seqs = seqs = [[11,22,MASK,33,MASK, gMASK, 55, 66, gMASK, 77]]  
    --> mask_positions:[5] use_gmask = [True]  
      
    把位置id结合mask位置信息由get_position_ids计算(为父类ChatGLMPreTrainedModel的方法)  
    在使用2d position coding 时,position_ids dim = batch_size * 2 * seq_length   
    第二维包含 position_id 和 block_position_id   
    """  
                MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id  
                seqs = input_ids.tolist()  
  
                mask_positions, use_gmasks = [], []  
                for seq in seqs:  
                    mask_token = gMASK if gMASK in seq else MASK  
                    use_gmask = mask_token == gMASK  
                    mask_positions.append(seq.index(mask_token))  
                    use_gmasks.append(use_gmask)  
  
                position_ids = self.get_position_ids(  
                    input_ids,  
                    mask_positions=mask_positions,  
                    device=input_ids.device,  
                    use_gmasks=use_gmasks  
                )  
  
        if self.pre_seq_len is not None and attention_mask is not None:  
            prefix_attention_mask = torch.ones(batch_size, 1, input_ids.size(-1), self.pre_seq_len).to(  
                attention_mask.device)  
            prefix_attention_mask = (prefix_attention_mask < 0.5).bool()  
            attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3)  
  
        """  
        输入的embedding在这里进行了转置   
        batch_size * seq_len * hidden_size -> seq_len * batch_size * hidden_size  
        """  
        # [seq_len, batch, hidden_size]  
        hidden_states = inputs_embeds.transpose(0, 1)  
  
        presents = () if use_cache else None  
        all_self_attentions = () if output_attentions else None  
        all_hidden_states = () if output_hidden_states else None  
  
        if attention_mask is None:  
            attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()  
        else:  
            attention_mask = attention_mask.to(hidden_states.device)  
  
              
  for i, layer in enumerate(self.layers):  
  
            if output_hidden_states:  
                all_hidden_states = all_hidden_states + (hidden_states,)  
            layer_past = past_key_values[i]  
  
            if self.gradient_checkpointing and self.training:  
                layer_ret = torch.utils.checkpoint.checkpoint(  
                    layer,  
                    hidden_states,  
                    position_ids,  
                    attention_mask,  
                    torch.tensor(i),  
                    layer_past,  
                    use_cache,  
                    output_attentions  
                )  
            else:  
                layer_ret = layer(  
                    hidden_states,  
                    position_ids=position_ids,  
                    attention_mask=attention_mask,  
                    layer_id=torch.tensor(i),  
                    layer_past=layer_past,  
                    use_cache=use_cache,  
                    output_attentions=output_attentions  
                )  
  
            hidden_states = layer_ret[0]  
  
            if use_cache:  
                presents = presents + (layer_ret[1],)  
  
            if output_attentions:  
                all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)  
  
        # Final layer norm.  
        hidden_states = self.final_layernorm(hidden_states)  
  
        if output_hidden_states:  
            all_hidden_states = all_hidden_states + (hidden_states,)  
  
        if not return_dict:  
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)  
  
"""  
 经过多个glm block堆叠,最后通过一个layernorm  
"""  
        return BaseModelOutputWithPast(  
            last_hidden_state=hidden_states,  
            past_key_values=presents,  
            hidden_states=all_hidden_states,  
            attentions=all_self_attentions,  
        )  

如有不详细之处,还望一起交流学习。

参考文献

  1. GLM: General Language Model Pretraining with Autoregressive Blank Infilling)

  2. modeling_chatglm.py · THUDM/chatglm-6b at main (huggingface.co)

  3. Transformer升级之路:2、博采众长的旋转式位置编码 - 科学空间|Scientific Spaces (kexue.fm)

**进技术交流群请添加AINLP小助手微信(id: ainlp2)**   


**请备注具体方向+所用到的相关技术点** 

![](https://api.allorigins.win/raw?url=https://mmbiz.qpic.cn/mmbiz_jpg/nW2ZPfuYqSJADkmZ2IX6Z23znAibuEevotDMq9iaMxiapK7jfMibiauGFkycicAJEs6x5U9SGyDJZ0S1tRed9TPNUUDQ/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1)



**关于AINLP** 

AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括LLM、预训练模型、自动生成、文本摘要、智能问答、聊天机器人、机器翻译、知识图谱、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLP小助手微信(id:ainlp2),备注工作/研究方向+加群目的。

  


  


![](https://api.allorigins.win/raw?url=https://mmbiz.qpic.cn/mmbiz_jpg/nW2ZPfuYqSKABHCqVVQkVYPrM4XY1vsd0iaeuXzyJnoFc8cibd5mYb4wdA3WMQtiaPVmr0XLZHMuVibqWncibpnTSnQ/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1)

**阅读至此了,分享、点赞、在看三选一吧🙏** 

更多AI工具,参考Github-AiBard123国内AiBard123

可关注我们的公众号:每天AI新工具