知识图谱焕发生机,激发大模型LLM深层次推理——昨天,今天和明天
作者: 吃果冻不吐果冻皮 来源: 吃果冻不吐果冻皮
####**【点击】加入大模型技术交流群**
“什么是创新?创新就是将原本不相关的知识连接到了一起 ”
两个月前的一个夜晚,灯火通明的智谱AI总部组织了一场面向垂直行业的闭门会,行业学术专家和大模型解决方案专家一起探讨AI落地的前景,当讨论到“大模型”与**“创新”** 的话题时,上述的发言让我记忆深刻。
现实确实如此:“汽车”和“可再生能源”的结合诞生了“新能源汽车”,“穿戴设备”和“传感器”的结合诞生了“电子手环”。
从微观上来看,大模型通过Beam Search让一个一个原本不相关的“字”,串联到了一起,形成一句人可以理解的话。
本质上都**“连接”** ,一个宏观,一个微观。
也许它们本身就有“一定”的关系*(汽车->汽油->非可再生能源->能源->可再生能源)*,只是以前没人把窗户纸捅破,那么第一个直接捅破的人,就叫**“创新”** 。
知识图谱与人脑
让机器做类似人脑的思考、推理过程,通常会想到“知识图谱”,我把上边提到的新能源汽车的例子画一张图:
“汽车”和“汽油”大家经常放在一起说,大脑几乎不用思考,脱口而出,这是“快思考”,但是要想把“汽车”和“可再生能源”关联起来,就需要按照上边这个图走一遍,发明家可能需要3秒钟,普通人也许一辈子也没有连通过,这是“慢思考”。
然而“快”和“慢”是不断演变的,对于我们2024年的地球人来说,【汽车->可再生能源】也变得和【汽车->汽油】一样脱口而出了。
知识图谱 —— 危!?
上边推演的这个例子要想让机器实现,关键在于两个点:
-
这张“图”如何建立?(图谱构建)
-
建立好的“图”该怎么用?(图谱推理)
从前,有大量的研究就是在解决这两个问题,现在来看,好像都不太成立了,比如:
*构建知识图谱 ,以前要做SPO三元组抽取(命名实体识别/关系抽取)、知识融合等等,但现在用一个Prompt就能替代所有的任务;
*用图谱做推理 ,以前要考虑表示学习推理、符号逻辑推理,现在大模型吸收了全世界的知识,上边那张图也许直接内化成了模型参数,直接生成答案,如果“快思考”效果不好,让CoT来模拟人的“慢思考”,大幅提升效果。
知识图谱还有用吗?或者该思考:大模型时代下的知识图谱该如何重新定义?(留作未来一段时间的思考题)
老树发新芽
带着这个问题,开始一些零零散散的探索和发现:原来沿着CoT的路线,已经涌现出了很多基于知识图谱的推理方案。
比如GoT (Graph of Thoughts)、ToG (Think on Graph)、RoG (Reason on Graph)等等,以ToG中的一副图为例,对比了三种技术方案的效果:
来自《THINK-ON-GRAPH: DEEP AND RESPONSIBLE REASONING OF LARGE LANGUAGE MODEL ON KNOWLEDGE GRAPH》
图中发起的提问是:“目前堪培拉所在国家的多数党是什么?”
*方案一: 直接丢给大模型,它会说,我的知识停留在2021年9月份,那时候的多数党是自由党(显然是错误的)
方案二: 传统借助知识图谱做KBQA的方案,大模型首先找到“堪培拉”所在的“国家”是“澳大利亚”,然后基于“澳大利亚”去找“多数党”的时候,发现不存在这条知识*(not exit)** ,然后就回复,抱歉,我没有足够的信息(显然不是没有足够信息,而是太懒了)
*方案三: 也就是作者提出的方案,即使没有明确的“显性关系”表达“多数党”,但是我们依然可以根据“澳大利亚->总理->安东尼->领导政党->工党”来推测出,多数党极有可能就是“工党”。
这种推理过程和人脑推理过程非常类似。
未来近在眼前
知识图谱回归了它的本质 ——知识的关联 。符号主义派 的加持,让现阶段在某些推理问题上表现不够好的联结主义派 的大模型,有了更强大的能力。
我预想,它会帮助人类打通无数原本无人连接过的且有高价值的“点”,让知识的发现和创新能力达到一个全新的高度。
引申的方向
以上都是在讲知识图谱,如果再抽象一些,来到“图”结构,会是更广阔的一篇领域。下面是一些关于更广泛意义的“图”如何结合大模型产生更大的价值的研究:
-
A Survey of Graph Meets Large Language Model: Progress and Future Directions
-
Graph Meets LLMs: Towards Large Graph Models
-
GPT4Graph: Can Large Language Models Understand Graph Structured Data? An Empirical Evaluation and Benchmarking
-
GRAPHLLM: BOOSTING GRAPH REASONING ABILITY OF LARGE LANGUAGE MODEL
-
……(不一一列举了,附上论文的gitHub集合,https://github.com/XiaoxinHe/Awesome-Graph-LLM)
当然也有专门针对“知识图谱”与大模型结合的综述:《Trends in Integration of Knowledge and Large Language Models: A Survey and Taxonomy of Methods, Benchmarks, and Applications》
来自《Trends in Integration of Knowledge and Large Language Models: A Survey and Taxonomy of Methods, Benchmarks, and Applications》
除了学术方面,最近关注到LangChain发布了一套新的Agent架构 ——LangGraph (https://blog.langchain.dev/langgraph/),它将图结构应用在了Agent智能体的编排中,同时在Multi Agent方向给出了一份架构设计的答卷。****
历史文章:2023年12月大模型文章集锦
更多AI工具,参考Github-AiBard123,国内AiBard123