RAG优化技巧7大挑战与解決方式提高你的LLM:下篇
作者: 知识派 来源: 知识派
RAG优化技巧 | 7大挑战与解决方式 | 提高你的LLM:下篇
在当今快速发展的人工智能领域,大型语言模型(LLM)已经成为无处不在的技术,它们不仅改变了我们与机器交流的方式,还在各行各业中发挥着革命性的影响。
然而,尽管LLM + RAG的能力已经让人惊叹,但我们在使用RAG优化LLM的过程中,还是会遇到许多挑战和困难,包括但不限于检索器返回不准确或不相关的数据,并且基于错误或过时信息生成答案。因此本文旨在提出RAG常见的7大挑战,并附带各自相应的优化方案,期望能够帮助我们改善RAG。
下图展示了RAG系统的两个主要流程:检索和查询;红色方框代表可能会遇到的挑战点,主要有7项:
-
- Missing Content: 缺失內容
-
- Missed Top Ranked: 错误排序內容,导致正确答案沒有被成功 Retrieve
-
- Not in Context: 上限文限制,导致正确答案沒有被采用
-
- Wrong Format: 格式错误
-
- Incomplete: 回答不全面
-
- Not Extracted: 未能检索信息
-
- Incorrect Specificity: 不合适的详细回答
由于篇幅比较长,上一篇我们谈了前 3 项, 这一篇我们谈谈剩余的 4 种策略:
格式错误
当我们使用prompt 要求LLM 以特定格式(如表格或列表)提取信息,但却被LLM 忽略时,可以尝试以下3种解决策略:
1. 改进prompt
我们可以采用以下策略来改进 prompt ,解决这个问题:
A.明确说明指令
B.简化请求并使用关键字
C.提供示例
D.采用迭代提示,提出后续问题
2. 输出解析器
输出解析器负责获取LLM 的输出,并将其转换为更合适的格式,因此当我们希望使用LLM生成任何形式的结构化数据时,这非常有用。它主要在以下方面帮助确保获得期望的输出:
A. 为任何提示/查询提供格式化指令
B. 对大语言模型的输出进行解析 。
Langchain 提供了许多不同类型Output Parsers 的流接口,以下是示范代码,具体细节请参阅官方文档[1]。
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field, validator
from langchain_openai import OpenAI
model = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0.0)
# 定义您想要的数据结构。
class Joke(BaseModel):
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
# 可以通过 Pydantic 轻松添加自定义验证逻辑。
@validator("setup")
def question_ends_with_question_mark(cls, field):
if field[-1] != "?":
raise ValueError("Badly formed question!")
return field
# 设置一个解析器 + 将指令注入到提示模板中。
parser = PydanticOutputParser(pydantic_object=Joke)
prompt = PromptTemplate(
template="Answer the user query.\n{format_instructions}\n{query}\n",
input_variables=["query"],
partial_variables={"format_instructions": parser.get_format_instructions()},
)
# And a query intended to prompt a language model to populate the data structure.
prompt_and_model = prompt | model
output = prompt_and_model.invoke({"query": "Tell me a joke."})
parser.invoke(output)
3. Pydantic parser
Pydantic 是一个多功能框架,它能够将输入的文本字符串转化为结构化的Pydantic 物件。Langchain 有提供此功能,归类在Output Parsers 中,以下是示范code ,可以参考官方文件[2]。
from typing import List
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field, validator
from langchain_openai import ChatOpenAI
model = ChatOpenAI(temperature=0)
# 定义你期望的数据结构。
class Joke(BaseModel):
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
# 可以很容易地使用 Pydantic 添加自定义验证逻辑。
@validator("setup")
def question_ends_with_question_mark(cls, field):
if field[-1] != "?":
raise ValueError("Badly formed question!")
return field
# 一个用来促使语言模型填充数据结构的查询意图。
joke_query = "Tell me a joke."
# 设置一个解析器+将指令注入到提示模板中。
parser = PydanticOutputParser(pydantic_object=Joke)
prompt = PromptTemplate(
template="Answer the user query.\n{format_instructions}\n{query}\n",
input_variables=["query"],
partial_variables={"format_instructions": parser.get_format_instructions()},
)
chain = prompt | model | parser
chain.invoke({"query": joke_query})
回答不完整
有时候 LLM 的回答并不完全错误,但会遗漏了一些细节。这些细节虽然在上下文中有所体现,但并未被充分呈现出来。例如,如果有人询问“文档A、B和C主要讨论了哪些方面?”对于每个文档分别提问可能会更加适合,这样可以确保获得更详细的答案。
查询转换
提高 RAG 系统效能的一个策略是添加一层查询理解层,也就是在实际进行检索前,先进行一系列的 Query Rewriting 。具体而言,我们可以采用以下四种转换方法:
1.1 路由:在不改变原始查询的基础上,识别并导向相关的工具子集,并将这些工具确定为处理该查询的首选。
1.2 查询重写:在保留选定工具的同时,通过多种方式重构查询语句,以便跨相同的工具集进行应用。
1.3 子问题:将原查询拆解为若干个更小的问题,每个问题都针对特定的工具进程定向,这些工具是根据它们的元数据来选择。
1.4 ReAct 代理选择器:根据原始查询判断最适用的工作,并为在该工作上运行而特别构造了查询。
Llamaindex 已经为这个问题整理出了一系列方便操作的功能,请查看官方文件[3];而Langchain 的大部分功能则散落在Templates 中,例如HyDE的实现和论文内容。以下是使用Langchain 进行HyDE的示例:
from langchain.llms import OpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains import LLMChain, HypotheticalDocumentEmbedder
from langchain.prompts import PromptTemplate
base_embeddings = OpenAIEmbeddings()
llm = OpenAI()
# Load with `web_search` prompt
embeddings = HypotheticalDocumentEmbedder.from_llm(llm, base_embeddings, "web_search")
# 现在我们可以将其用作任何嵌入类!
result = embeddings.embed_query("Where is the Taj Mahal?")
Not Extracted(未能检索信息)
当RAG 系统面对众多信息时,往往难以准确提取出所需的答案,关键信息的遗漏降低了回答的质量。研究显示,这种情况通常发生在上下文中存在过多干扰或矛盾信息时。以下是针对这一问题提出的三种解决策略:
1. 数据清洗
数据的质量直接影响到检索的效果,这个痛点再次突显了优质数据的重要性。在责备你的 RAG 系统之前,请确保你已经投入足够的精力去清洗数据。
2. 信息压缩
提示信息压缩技术在长上下文场景下,首次由 LongLLMLingua 研究项目提出,并已在 LlamaIndex 中得到应用,相对 Langchain 的资源则较零散。现在,我们可以将 LongLLMLingua 作为节点后处理器来实施,这一步会在检索后对上下文进行压缩,然后再送入 LLM 处理。
以下是在 LlamaIndex 中使用 LongLLMLingua 的示范,其他细节可以参考官方文件[4]:
from llama_index.query_engine import RetrieverQueryEngine
from llama_index.response_synthesizers import CompactAndRefine
from llama_index.postprocessor import LongLLMLinguaPostprocessor
from llama_index.schema import QueryBundle
node_postprocessor = LongLLMLinguaPostprocessor(
instruction_str="Given the context, please answer the final question",
target_token=300,
rank_method="longllmlingua",
additional_compress_kwargs={
"condition_compare": True,
"condition_in_question": "after",
"context_budget": "+100",
"reorder_context": "sort", # enable document reorder
},
)
retrieved_nodes = retriever.retrieve(query_str)
synthesizer = CompactAndRefine()
## 梳理 RetrieverQueryEngine 中的步骤,以确保清晰易懂。
## 后处理(压缩),合成
new_retrieved_nodes = node_postprocessor.postprocess_nodes(
retrieved_nodes, query_bundle=QueryBundle(query_str=query_str)
)
print("\n\n".join([n.get_content() for n in new_retrieved_nodes]))
response = synthesizer.synthesize(query_str, new_retrieved_nodes)
3. LongContextReorder
这在第二个挑战,Missed Top Ranked中有提到,为了解决LLM在文件中间会有「迷失」的问题,它通过重新排序检索到的节点来优化处理,特别适用于需要处理大量顶级结果的情形。细节示范可以参考上面的内容。
不正确的具体性(Incorrect Specificity)
有时,LLM 的回答可能不够详细或具体,用户可能需要进行多次追问才能得到清晰的解答。这些答案可能过于笼统,无法有效满足用户的实际需求。
因此,我们需要采取更高级的检索策略来寻找解决方案。
当我们发现回答缺乏期望的详细程度时,通过优化检索策略可以显著提升信息获取的准确性。LlamaIndex 提供了许多高级检索技巧,而Langchain 在这方面资源较少。以下是一些在 LlamaIndex 中能够有效缓解此类问题的高级检索技巧:
-
• Auto Merging Retriever[5] * • Metadata Replacement + Node Sentence Window[6]
-
• Recursive Retriever[7] #### 总结
本文探讨了使用 RAG 技术时可能面临的七大挑战,并针对每个挑战提出了具体的优化方案,以提升系统准确性和用户体验。
-
• 缺失内容:解决方案包括数据清理和提示工程,确保输入数据的质量并引导模型更准确地回答问题。
-
• 未识别出的最高排名:可通过调整检索参数和优化文件排序来解决,以确保向用户呈现最相关的信息。
-
• 背景不足:扩大处理范围和调整检索策略至关重要,以包含更广泛的相关信息。
-
• 格式错误:可以通过改进提示、使用输出解析器和 Pydantic 解析器实现,有助于按照用户期望的格式获取信息。
-
• 不完整部分:可通过查询转换来解决,确保全面理解问题并作出回应。
-
• 未提取部分:数据清洗、消息压缩和 LongContextReorder 是有效的解决策略。
-
• 特定性不正确:可以通过更精细化的检索策略如 Auto Merging Retriever、元数据替换等技巧来解决问题,并进一步提高信息查找精度。
通过对 RAG 系统挑战的深入分析和优化,我们不仅可以提升LLM 的准确性和可靠性,还能大幅提高用户对技术的信任度和满意度。
希望这篇能帮助我们改善我们的 RAG 系统。
引用链接
[1]
官方文档: https://python.langchain.com/docs/modules/model_io/output_parsers/
[2]
官方文件: https://python.langchain.com/docs/modules/model_io/output_parsers/types/pydantic
[3]
官方文件: https://docs.llamaindex.ai/en/stable/examples/query_transformations/query_transform_cookbook.html
[4]
官方文件: https://docs.llamaindex.ai/en/stable/examples/node_postprocessor/LongLLMLingua.html#longllmlingua
[5]
Auto Merging Retriever: https://docs.llamaindex.ai/en/stable/examples/retrievers/auto_merging_retriever.html
[6]
Metadata Replacement + Node Sentence Window: https://docs.llamaindex.ai/en/stable/examples/retrievers/auto_merging_retriever.html
[7]
Recursive Retriever: https://docs.llamaindex.ai/en/stable/examples/query_engine/pdf_tables/recursive_retriever.html
1、阿里云 99 元云服务器:https://www.aliyun.com/minisite/goods?userCode=c0ngnrad
很多时候,束缚住你的并不是能力,而是遇到困难就逃避退缩的懦弱。你越害怕,越会被困难击倒;你若迎难而上,问题终会得到解决。要相信,你的每一次努力,都会增加你面对世界的底气。
❤️ 扫码关注不迷路❤️**
更多AI工具,参考Github-AiBard123,国内AiBard123