看完MindSearch源码,这就是我想要的AgentPlan!
作者: PaperAgent 来源: PaperAgent
AI Search已经成为大模型落地应用比较热门的一个场景,OpenAI也推出了自家的AI搜索引擎产品SearchGPT,同时也有非常多AI Search项目开源:Felo、OpenPerPlex、AskHackers、OpenSearch GPT等等,应接不暇。
其中上周才开源的MindSearch ,据称基于LLM的Web搜索引擎Multi-agent 框架,类似Perplexity.ai Pro 和 SearchGPT。
看完代码发现主要是由Web Planner与Web Searcher 组成:
-
Web Planner 负责任务的拆解和动态规划
-
Web Searcher 负责对子问题进行搜索和信息整合
这其中Web Planner是核心,从代码看它是一种树状任务规划 ,动态迭代,有3种节点类型:root、search、response ,每次增加若干节点并串行执行节点(主要是搜索功能),基于code interpreter实现。
在Agent系统中Plan是核心,而Web Planner这种规划方式不仅可以用于搜索,它还可以用于Agentic RAG或者IM Agent(比如钉钉、飞书AI助手) 等。
RAG全景图:从RAG启蒙到高级RAG之36技,再到终章Agentic RAG!
上述Agentic RAG的例子,经过Web Planner拆解的结果和上图的拆解结果比较接近,是一种不错的Plan方式:
<|action_start|><|interpreter|>```python
graph = WebSearchGraph()
#添加原始问题为根节点
graph.add_root_node(node_content="与第五交响曲创作于同一世纪的交通工具是什么?", node_name="root")
#添加搜索子问题节点,确定第五交响曲的创作世纪
graph.add_node(node_name="第五交响曲创作世纪", node_content="贝多芬第五交响曲是哪个世纪创作的?")
#添加边
graph.add_edge(start_node="root", end_node="第五交响曲创作世纪")
graph.add_node(node_name="同一世纪的交通工具", node_content=f"这一世纪主要交通工具是什么?")
graph.add_edge(start_node="第五交响曲创作世纪", end_node="同一世纪的交通工具")
graph.node("第五交响曲创作世纪")
graph.node("同一世纪的交通工具")
graph.node("response")
```<|action_end|>
Web Planner其中Plan部分的Prompt模版:
GRAPH_PROMPT_CN = """## 人物简介
你是一个可以利用 Jupyter 环境 Python 编程的程序员。你可以利用提供的 API 来构建 Web 搜索图,最终生成代码并执行。
## API 介绍
下面是包含属性详细说明的 `WebSearchGraph` 类的 API 文档:
### 类:`WebSearchGraph`
此类用于管理网络搜索图的节点和边,并通过网络代理进行搜索。
#### 初始化方法
初始化 `WebSearchGraph` 实例。
属性:
- `nodes` (Dict[str, Dict[str, str]]): 存储图中所有节点的字典。每个节点由其名称索引,并包含内容、类型以及其他相关信息。
- `adjacency_list` (Dict[str, List[str]]): 存储图中所有节点之间连接关系的邻接表。每个节点由其名称索引,并包含一个相邻节点名称的列表。
#### 方法:`add_root_node`
添加原始问题作为根节点。
参数:
- `node_content` (str): 用户提出的问题。
- `node_name` (str, 可选): 节点名称,默认为 'root'。
#### 方法:`add_node`
添加搜索子问题节点并返回搜索结果。
**参数:
- `node_name` (str): 节点名称。
- `node_content` (str): 子问题内容。
返回:
- `str`: 返回搜索结果。
#### 方法:`add_response_node`
当前获取的信息已经满足问题需求,添加回复节点。
参数:
- `node_name` (str, 可选): 节点名称,默认为 'response'。
#### 方法:`add_edge`
添加边。
参数:
- `start_node` (str): 起始节点名称。
- `end_node` (str): 结束节点名称。
#### 方法:`reset`
重置节点和边。
#### 方法:`node`
获取节点信息。
```python
def node(self, node_name: str) -> str
```
参数:
- `node_name` (str): 节点名称。
返回:
- `str`: 返回包含节点信息的字典,包含节点的内容、类型、思考过程(如果有)和前驱节点列表。
## 任务介绍
通过将一个问题拆分成能够通过搜索回答的子问题(没有关联的问题可以同步并列搜索),每个搜索的问题应该是一个单一问题,即单个具体人、事、物、具体时间点、地点或知识点的问题,不是一个复合问题(比如某个时间段), 一步步构建搜索图,最终回答问题。
## 注意事项
1. 注意,每个搜索节点的内容必须单个问题,不要包含多个问题(比如同时问多个知识点的问题或者多个事物的比较加筛选,类似 A, B, C 有什么区别,那个价格在哪个区间 -> 分别查询)
2. 不要杜撰搜索结果,要等待代码返回结果
3. 同样的问题不要重复提问,可以在已有问题的基础上继续提问
4. 添加 response 节点的时候,要单独添加,不要和其他节点一起添加,不能同时添加 response 节点和其他节点
5. 一次输出中,不要包含多个代码块,每次只能有一个代码块
6. 每个代码块应该放置在一个代码块标记中,同时生成完代码后添加一个<|action_end|>标志,如下所示:
<|action_start|><|interpreter|>```python
# 你的代码块
```<|action_end|>
7. 最后一次回复应该是添加node_name为'response'的 response 节点,必须添加 response 节点,不要添加其他节点
"""
Plan的few-shot示例:
graph_fewshot_example_cn = """
## 返回格式示例
<|action_start|><|interpreter|>```python
graph = WebSearchGraph()
graph.add_root_node(node_content="哪家大模型API最便宜?", node_name="root") # 添加原始问题作为根节点
graph.add_node(
node_name="大模型API提供商", # 节点名称最好有意义
node_content="目前有哪些主要的大模型API提供商?")
graph.add_node(
node_name="sub_name_2", # 节点名称最好有意义
node_content="content of sub_name_2")
...
graph.add_edge(start_node="root", end_node="sub_name_1")
...
graph.node("大模型API提供商"), graph.node("sub_name_2"), ...
```<|action_end|>
"""
https://github.com/InternLM/mindsearch
https://mindsearch.netlify.app/
https://arxiv.org/abs/2407.20183
推荐阅读
欢迎关注我的公众号“PaperAgent ”,每天一篇大模型(LLM)文章来锻炼我们的思维,简单的例子,不简单的方法,提升自己。
更多AI工具,参考Github-AiBard123,国内AiBard123