AI新工具
banner

Rapid Layout


介绍:

Rapid Layout 是一个用于文档图像版面分析的工具,可以识别标题、段落、表格等元素。









Rapid Layout

📖 Rapid Layout
简介

Rapid Layout 是一个主要用于文档类图像版面分析的工具。其核心功能是分析给定的文档图像(如论文截图、研报等),并能够识别定位文档中的标题、段落、表格和图片等不同部分。

注意:由于不同场景下的版面存在很大差异,目前没有一个单一的模型可以适用于所有场景。如果模型效果不佳,建议用户根据实际需求构建自己的训练集进行微调。

支持的版面类型及模型
model_type 版面类型 模型名称 支持类别
pp_layout_table 表格 layout_table.onnx ["table"]
pp_layout_publaynet 英文 layout_publaynet.onnx ["text", "title", "list", "table", "figure"]
pp_layout_cdla 中文 layout_cdla.onnx ['text', 'title', 'figure', 'figure_caption', 'table', 'table_caption', 'header', 'footer', 'reference', 'equation']
yolov8n_layout_paper 论文 yolov8n_layout_paper.onnx ['Text', 'Title', 'Header', 'Footer', 'Figure', 'Table', 'Toc', 'Figure caption', 'Table caption']
yolov8n_layout_report 研报 yolov8n_layout_report.onnx ['Text', 'Title', 'Header', 'Footer', 'Figure', 'Table', 'Toc', 'Figure caption', 'Table caption']
yolov8n_layout_publaynet 英文 yolov8n_layout_publaynet.onnx ["Text", "Title", "List", "Table", "Figure"]
yolov8n_layout_general6 通用 yolov8n_layout_general6.onnx ["Text", "Title", "Figure", "Table", "Caption", "Equation"]
安装
$ pip install rapid-layout
使用方式
Python脚本运行
import cv2
from rapid_layout import RapidLayout, VisLayout

layout_engine = RapidLayout(conf_thres=0.5, model_type="pp_layout_cdla")
img = cv2.imread('test_images/layout.png')
boxes, scores, class_names, elapse = layout_engine(img)
ploted_img = VisLayout.draw_detections(img, boxes, scores, class_names)
if ploted_img is not None:
    cv2.imwrite("layout_res.png", ploted_img)
终端运行
$ rapid_layout -h
usage: rapid_layout [-h] -img IMG_PATH
                [-m {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6}]
                [--conf_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6}]
                [--iou_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6}]
                [--use_cuda] [--use_dml] [-v]

# 示例
$ rapid_layout -v -img test_images/layout.png
GPU推理
pip install rapid_layout
pip uninstall onnxruntime
pip install onnxruntime-gpu
示例代码
import cv2
from rapid_layout import RapidLayout
from pathlib import Path

layout_engine = RapidLayout(conf_thres=0.5, model_type="pp_layout_cdla", use_cuda=True)
layout_engine("images/12027_5.png")
elapses = []
img_list = list(Path('images').iterdir())
for img_path in img_list:
    boxes, scores, class_names, elapse = layout_engine(img_path)
    print(f"{img_path}: {elapse}s")
    elapses.append(elapse)

avg_elapse = sum(elapses) / len(elapses)
print(f'avg elapse: {avg_elapse:.4f}')
可视化结果

layout_res

参考项目
可关注我们的公众号:每天AI新工具

广告:私人定制视频文本提取,字幕翻译制作等,欢迎联系QQ:1752338621