AI新工具
banner

Orchestra


介绍:

Orchestra 是一个轻量级开源框架,适用于构建基于大型语言模型的多智能体团队和复杂工作流程。









Orchestra

Orchestra 简介

Orchestra(主框架序列)是一个轻量级的开源代理框架,旨在构建基于大型语言模型(LLM)的工作流和多代理团队。它实现了一种独特的代理编排方法,不仅限于简单的数据路由,而是能够支持复杂的工作流管理。Orchestra 提供模块化的架构,便于扩展和集成,支持动态任务分解与代理协作,显著减少 LLM 的认知负担,同时具有直观的工具定义和可配置的故障保护机制。

Orchestra 的关键特性
  • 模块化设计:便于构建、扩展和集成。
  • 代理编排:代理可以作为任务执行者和协调者,有助于实现动态协调。
  • 分阶段任务执行:通过结构化思维模式降低 LLM 的认知负荷。
  • 工具集成:支持简化的文档字符串工具定义,避免复杂的 JSON 架构。
  • 流式支持:实时输出流,支持同步和异步操作。
  • 内置故障恢复:优雅处理 LLM 失败,提供可配置的回退链。
使用场景

Orchestra 的使用场景非常广泛,包括但不限于以下几种:

  1. 研究助手:可通过集成搜索工具(如 Exa)实现对特定主题的调查与说明,例如量子计算的简明解释。

  2. 金融分析:构建多代理团队分析股票,包含市场微观结构分析、基本面分析、技术分析和情绪分析等角色,每个角色使用特定的工具和知识进行精准分析。

  3. 自动化工作流:支持构建从简单任务到复杂多代理系统的完整工作流,方便交互和数据操作。

  4. 信息检索和处理:整合 web 搜索、文件读取等工具,实现信息的获取与处理。

示例代码

以下是一个简单的示例,演示如何使用 Orchestra 创建研究助手:

from mainframe_orchestra import Agent, Task, OpenaiModels, WebTools, set_verbosity

set_verbosity(1)

research_agent = Agent(
    role="research assistant",
    goal="answer user queries",
    llm=OpenaiModels.gpt_4o,
    tools={WebTools.exa_search}
)

def research_task(topic):
    return Task.create(
        agent=research_agent,
        instruction=f"Use your exa search tool to research {topic} and explain it in a way that is easy to understand.",
    )

result = research_task("quantum computing")
print(result)
结论

Orchestra 为开发者提供了强大的工具和灵活性,用于构建多样的智能代理工作流,适用于各种场景。通过其模块化的设计和可扩展的架构,用户能够轻松创建自己的多代理系统,从而高效应对复杂任务的需求。如果您对 Orchestra 感兴趣,可以在其文档中找到更多的信息和教程。

可关注我们的公众号:每天AI新工具

广告:私人定制视频文本提取,字幕翻译制作等,欢迎联系QQ:1752338621